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Abstract

Fluid–structure interaction (FSI) problem is investigated to study the dynamic stability of liquid-filled
projectiles under a thrust. The projectile is modelled as a flexible cylindrical shell, and the thrust is modelled
by the constant and pulsating follower force. To analyze the fluid and structure simultaneously,
hydrodynamic pressure of the liquid and elastic deformation of the structure are taken into consideration.
We assume that the fluid is incompressible and having free-surface effect. In the numerical study, natural
frequencies for various filling ratios of liquid of the cylindrical shells are analyzed and compared with the
previous experimental and theoretical works for with and without the free-surface effect. Further, the
results on dynamic stability of partially liquid-filled slender cylindrical shells under constant and pulsating
follower force for various filling ratios of the fluid are summarized. Lastly, the effects of length and
thickness of the shell are studied in detail.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid–structure interaction (FSI) problems have attracted great attention from engineers due to
its wide practical applicability such as in the design of launch vehicles, marine platforms, nuclear
power plants, etc.
Generally, the dynamic characteristics of an elastic body are different from a body containing a

fluid medium. That is to say, when an elastic structure vibrates, the hydrodynamic pressure is
developed. Further, the pressure modifies the deformation of the structure, which, in turn, affects
the hydrodynamic pressure. Therefore, the structure and the fluid should be considered as a single
coupled system.
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In the analysis of liquid-storage tanks, the formulation of the hydrodynamic pressure field has
been a major research topic as shown in Ref. [1]. Some of the studies conducted in connection to
this subject are as follows. Housner [2] assumed liquid as an ideal flow, but neglected the container
flexibility and the free surface of the liquid. Veletsos and Yang [3] emphasized the importance of
the flexibility of the container in the dynamic modelling of liquid motion. Morand and Ohayon
[1,4,5] proposed general numerical formulations for coupled systems.
FSI can be classified into three categories, such as sloshing, hydroelastic, and vibroacoustic

modes [4–7]. Among them, liquid propellant rocket tend to experience dominant hydroelastic
vibration, which is similar to the vibration of an elastic tank with incompressible and
inviscid liquid without gravity effect. Particularly, hydroelastic longitudinal oscillations are
involved in the so-called ‘‘Pogo instability’’. In actual cases, we would face with the simultaneous
vibration of fluids and structures under gravity fields and prescribed excitation forces. At the
same time, gravity can be viewed as a restoring force acting on the free surface. For
sufficiently high frequency range, this force is negligible compared with the liquid dynamic forces.
Thus, the frequencies of interest should be sufficiently above the sloshing natural frequency of the
liquid, which can be computed for the same fluid domains and fixed fluid–structure contact
surfaces [5].
Based on the finite element method, two basic approaches were used for the FSI problems. In

the first approach, the fluid was characterized as a single pressure or velocity potential variable at
each node of the finite element mesh [6–8], and then the fluid and structure were coupled through
the fluid–structure interface. The coupled set of equations is, in general, unsymmetric. In the
second approach, the displacement formulation [9,10] was such that the fluid motion is expressed
in terms of the nodal displacements. By doing so, compatibility and equilibrium along the
interface are automatically satisfied. The fluid is modelled as elastic solid with negligible shear
modulus. This assumption of negligible shear modulus leads to the appearance of non-physical
‘‘circulation’’ modes. Different techniques have been introduced to eliminate these non-physical
modes [11,12]. The main advantage of this approach is its similarity between the discretized forms
of the fluid and the structure. Another way to describe the fluid motion is to use both the
displacement or velocity potential and the acoustic pressure altogether [1,5,13]. Then, the resulting
finite element equations would become symmetric, and the circulation modes could be avoided
without having to use penalty terms to restore the inviscid nature of the fluid. In this study, we
adopt this so-called mixed formulation.
Especially, space shuttle and intercontinental ballistic missile have been using liquid propellant

rocket to produce a large thrust within a short time interval. For this reason, a propellant tank is
built in large size, and the liquid–structure interaction in a fuel tank has been an important issue.
In this paper, we modelled a thrust as a constant and pulsating follower force [14], and FSI is

considered for investigating the dynamic stability of partially liquid-filled cylindrical shells. A
variational principle for FSI including the compressibility of the fluid is considered as in
Refs. [5,7]. Then, a mixed formulation is used to generate a symmetric coupled set of equations for
incompressible and inviscid fluid. To check the validity of the finite element method in this study,
we compare the natural frequencies of partially filled clamped-free water tanks with and without
free-surface effect with previous works. In addition, we considered the hydroelastic vibration of a
structure under a thrust for various lengths, thicknesses, and filling ratios to analyze the
structure’s dynamic stability.
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2. Formulation

2.1. Fluids and structures

Vibration of the launcher is accompanied by fluctuations in the liquid pressures, especially
at the fuel feed inlets in the propulsion unit, which induces pressure and feed rate oscillations,
and consequently, fluctuations in the rocket engine thrust, together with oscillatory forces
at the anchor points of structure lines of the launcher. These forces can develop to increase the
launcher vibrations, and hence lead to an instability known as the ‘‘Pogo’’ effect. This study
focuses on the fluid–structure interaction by using the simplified model for partially-filled
cylindrical shells under a thrust as shown in Fig. 1. In this, finite element meshes consist of
cylindrical shell elements, fluid solid elements, and interface elements. To obtain a symmetric
finite element formulation, we describe the fluid by pressure ðPÞ and displacement potential ðjÞ;
respectively.
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2.1.1. Fluids

The motion of an isothermal, inviscid fluid with small disturbance is governed by

Continuity equation: ’rF þ rF vi;i ¼ 0 in RF ; ð1Þ

Euler equation: rF ’vi ¼ tij;j in RF ; ð2Þ

Barotropic equation: ’P ¼
B

rF

’rF ¼ 0 in RF ; ð3Þ

where rF is the fluid density, vi is the velocity component, and tij is the Cauchy stress tensor
given by

tij ¼ �Pdij;

where P is the pressure, dij is the Kronecker Delta and B is the bulk modulus. Throughout this
paper, a standard indicial notation is used; subscripts denote the components of tensors and
repeated subscripts imply a sum of all the index. In addition, a comma followed by a subscript
denotes a partial derivative with respect to the corresponding spatial variable, whereas a
superimposed dot denotes the time derivative. The continuity equation (1) can be combined with
Eq. (3) of state to yield

1

B
’P þ vk;k ¼ 0 in RF : ð4Þ

Similarly, the Euler equation (2) can also be combined with the constitutive equation
to yield

r’vi ¼ �P;i in RF : ð5Þ

To formulate the fluid–structure interaction problem, the fluid boundary @RF is divided into
two parts, such as the free-surface boundary @RFS; the fluid–structure interaction boundary @RI ;
and the prescribed traction boundary. The latter boundary is set to zero in this formulation. The
unit outward normal to @RF is denoted by ni: To eliminate the rotational part of the velocity field,
a displacement potential, j; is introduced such that

vi ¼ ’j;i or uF
i ¼ j;i in RF ð6Þ

and uF
;i is the fluid displacement.

With this definition, the free-surface displacement uF
g is related to P by

P ¼ rF guF
g or uF

g ¼ j;ini ¼
1

rF g
P on @RFS: ð7Þ

Substituting Eq. (6) into Eqs. (4) and (5), respectively, then the continuity equation becomes

1

B
P þ j;ii ¼ 0 in RF ð8Þ

and the momentum equation can be obtained as

P þ rF .j ¼ 0 in RF : ð9Þ
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Eqs. (7)–(9) can be derived by considering the variation of the functional with Lagrange
multipliers given by

dpf ¼ d
Z t1

t0

Z
RF

1
2
rF ’j;i ’j;i �

1

2B
P2

� �
dRF dt þ

Z t1

t0

Z
@RFS

�
1

2rF g
P2

� �
d@RFS dt

�

þ
Z t1

t0

Z
RF

l1ðP þ rF .jÞ dRF dt þ
Z t1

t0

Z
@RFS

l3ðP þ rF .jÞ d@RFS dt

�
¼ 0; ð10Þ

where the first integral involves the kinetic and potential energies, the second term is the free-
surface potential energy, and l1; and l3 are the Lagrange multipliers that have to be determined.
To include fluid–structure interaction, dpF is redefined as

dpF ¼ dpf þ d
Z t1

t0

Z
@RI

ð�PuiniÞ d@RI dt þ
Z t1

t0

Z
@RI

l2ðP þ rF .jÞ d@RI dt

� �
; ð11Þ

where the first additional term is the work done due to the structural displacement ui around @RI ;
and the second term enforces the equilibrium between P and j with l2 as a Lagrange multiplier.

2.1.2. Structures

An assumed independent strain formulation is applied to derive the eighteen-node solid element
for shell analysis [15,16]. Hamilton’s principle is applied to a shell subjected to a constant and
pulsating follower force as follows:

dpS ¼ d
Z

Rs

1
2
rs ’ui ’ui dRS þ d

Z
Rs

1
2
tijeij dRS þ dWf ; ð12Þ

where the first and second terms represent the kinetic energy and the strain energy, respectively. In
addition, dWf is the virtual work of the follower force. In addition, the axial stress is linearly
distributed along the longitudinal direction [17], and that the axial stress is uniformly distributed
in the thickness direction [18], then dWf can be expressed as

dWf ¼
Z 2p

0

Z L

0

F ðtÞ
L

ðL � xÞ
@dw

@x

@w

@x
þ

@dv

@x

@v

@x

� �
R dx dy

þ
Z 2p

0

FðtÞ dw
@w

@x
þ dv

@v

@x

�
R dy

� ����
x¼0

; ð13Þ

In the present analysis, the dynamic stability is examined for two special cases of F ðtÞ: First, F ðtÞ
has a constant magnitude as

F ðtÞ ¼ F0: ð14Þ

Second, FðtÞ has a harmonically pulsating part as well as a constant part as

F ðtÞ ¼ F0 þ F1 cosðof tÞ: ð15Þ

ARTICLE IN PRESS

S.-W. Jung et al. / Journal of Sound and Vibration 280 (2005) 611–631 615



The dynamic instabilities of the two cases are very different from each other in the aspect of the
method of analysis and the physical meaning.

2.1.3. A three-field mixed variational formulation

FSI problem can be obtained by combining the functionals for the structure and the fluid, such
as Eqs. (11) and (12), respectively:

dp ¼ dpS þ dpF : ð16Þ

The variational formulation for compressible, irrotational, and inviscid fluid and the structure
is given by [5,7]

dp ¼ d
Z

RS

1
2
rS ’ui ’ui dRS þ d

Z
RS

1
2
tijeij dRS þ dWf

þ d
Z

RF

1
2
rF ’j;i ’j;i þ

1

2B
P2 þ

rF

B
P .j

� �
dRF þ d

Z
@RI

ðrF uini .jÞ d@RI

þ d
Z
@RFS

P2

2rF g
þ
1

g
P .j

� �
d@RFS: ð17Þ

2.2. Finite element equations

Finite element approximation of ui; P; and j are as follows:

ui ¼ Njuij; P ¼ SjPj; j ¼ Hjjj; ð18Þ

where Nj;Sj and Hj are the shape functions; uij ;Pj and jj are the nodal structural displacement,
displacement pressure and potential, respectively. Additionally, j is summed over the appropriate
range of indices.
Matrices corresponding to the Eq. (17) are expressed symbolically as follows:Z

RS

deijtij dRS þ dWf ¼ dUTKSU ;

Z
RS

dwi .wi dRS ¼ dUTMSU ; ð19a;bÞ

Z
RF

rFdj;i .j;i dRF ¼ dFTMFF;
Z

RF

rF

B
dp .j dRF ¼ dPTMPFF; ð19c;dÞ

Z
@RFS

1

rF g
dpp d@RFS ¼ dPTKFS

P P;

Z
RF

1

B
dpp dRF ¼ dPTKPP; ð19e; fÞ

Z
@RI

dwinirF .j d@RI ¼ dUTMSFF;
Z
@RFS

1

g
dp .j d@RFS ¼ dPTMFS

PFF: ð19g;hÞ

Then the set of three matrix equations is obtained as

MS .u þ KSu þ MSF .j ¼ 0;

KPP þ MPF .jþ KFS
P P þ MFS

PF .j ¼ 0;

�MF .jþ MT
PF

.P þ MT
SF .u þ ðMFS

PF Þ
T .P ¼ 0: ð20Þ
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Rearranging terms in the above equations, the equation of motion for the system can be
written as [1],

*M .q þ *Kq ¼ 0; ð21Þ

where the generalized mass matrix and stiffness matrix are symmetric and are given by

*M ¼
MS þ MSF M�1

F MT
SF MSF M�1

F ðMPF þ MFS
PF Þ

T

sym: ðMPF þ MFS
PF ÞM

�1
F ðMPF þ MFS

PF Þ
T

" #

and

*K ¼
KS 0

0 ðKP þ KFS
P Þ

" #
:

For an incompressible fluid, Eq. (17) can be simplified as bulk modulus ðBÞ approaches infinity so
that the governing equation of motion for an incompressible FSI problem with free surface is
given by

M� .q� þ K�q� ¼ 0; ð22Þ

where

M� ¼
MS þ MSF M�1

F MT
SF MSF M�1

F ðMFS
PF Þ

T

sym: ðMFS
PF ÞM

�1
F ðMFS

PF Þ
T

" #

and

K� ¼
KS 0

0 KFS
P

" #
:

Now we will consider the vibration of an elastic structure containing an incompressible liquid
without free surface. The governing equation of hydroelastic vibration under a follower force is
given by

ð½MS� þ ½MSF �½M�1
F �½MT

SF �Þf .ug þ ð½KS� � F ðtÞ½KF �Þfug ¼ 0; ð23Þ

where u is a vector consisting of ui;vi and wi and KF is the stiffness matrix due to the follower
force. Eigenvalues of these equations are the natural frequencies of fluid–structure interaction
system, and we assume that 6 rigid-body modes (translation with respect to x; y or z directions,
spinning with respect to x; y or z direction) can be controlled by the proper control equipment.

2.2.1. Constant follower force

By introducing non-dimensional parameters such as x/R; z/R;L/R; and t/R; we can obtain the
following parameters [18]:

bðtÞ ¼ FðtÞ
ð1� n2Þ

Et
; ð24Þ

l2 ¼ o2 ð1� n2ÞrSR2

E
; ð25Þ
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t ¼ t
E

ð1� n2Þ
rSR2

� �1=2

: ð26Þ

Using these parameters and Eq. (14), Eq. (23) can be rewritten as

½ %M �f.%ug þ ð½ %Ke� � b0½ %Kf �Þf %ug ¼ 0; ð27Þ

where b0 ¼ F0ð1� n2Þ=Et and %M; %Ke and %Kf are non-dimensional matrices. We can use these
equations to analyze the dynamic stability of the liquid-filled cylindrical shell under a constant
follower force. The stability of the cylindrical shell can be examined by checking the sign and the
imaginary part of l2: The coalescence of two eigenvalues of Eq. (27) indicates a flutter-type
instability, and the eigenvalues become complex numbers. If an eigenvalue of Eq. (27) reduces to
zero, a divergence type instability occurs.

2.2.2. Pulsating follower force
In the case of a pulsating follower force, Eqs. (15) and (23) can be regarded as a system of

Mathieu-Hill equations, and equation of this type can be analyzed by various methods. Nayfeh
and Mook [19] introduced the method of multiple scales as follows.
Using Eq. (15) and Eqs. (24)–(26), Eq. (23) can be written as

½ %M �f.%ug þ ½ %K �f %ug þ e1bcr cosðlf tÞ½ %Kf �f %ug ¼ 0; ð28Þ

where ½ %K � ¼ ½ %Ke� � e0bcr½ %Kf �; e0 ¼ b0=bcr; and e1 ¼ b1=bcr: In addition, bcr is the magnitude of b0
at which a divergence or a flutter takes place for the case of a constant follower force.
We take only the constant part of the follower force into account in Eq. (23). In such case, the

eigenvalue problem is obtained as mentioned in the preceding paragraph. Once one obtains the
normalized left ½C� and right ½f� eigenvectors of the eigenvalue problem, the spectral
decomposition of the matrices can be performed. Eq. (28) can be transformed in the following
by normalization using the modal matrix ½C� and ½f�:

½I �f .ypg þ ½L�fypg � e1 cosðlf tÞ½ %Kft�fypg ¼ 0; ð29Þ

where ½c�T½ %M �½f� ¼ ½I �; ½c�T½ %K �½f� ¼ ½L� and bcr½c�
T½ %Kf �½f� ¼ ½ %Kft�:

Eq. (29) can be rewritten as

d2

dt2
yp þ l2pyp � e1 cosðlf tÞ

XM
q¼1

fpqyp ¼ 0: ð30Þ

Now, suppose that yp in the following form to use the method of multiple scales:

ypðt; eÞ ¼ yp0ðT0;T1;T2Þ þ eyp1ðT0;T1;T2Þ þ e2yp2ðT0;T1;T2Þ þ?; ð31Þ

where eð¼ �e1=2Þ is the perturbation parameter and Tn is expressed as ent: Through the first order
approximation, i.e., by considering the only first two terms in Eq. (31), we can define the
transition curves that separate stable solutions from unstable ones in the e1 � lf plane. High order
expansions can express the transition curves as more exact and high-order function. However, if
we restrict e1 within a specific value, the first order expansions also produce a good result [20]. The
results can be summarized as follows.
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If lf is near lp þ lq and fpq fqp > 0;

lf ¼ lp þ lq7
e1
2


 �
Lpq þ Oðe21Þ; Lpq ¼

fpq fqp

lplp

� �1=2

ð32Þ

and if lf is near lp � lq; fpq fqpo0; and lp > lq;

lf ¼ lp � lq7
e1
2


 �
Lpq þ Oðe21Þ; Lpq ¼

�fpq fqp

lplp

� �1=2

: ð33Þ

From Eqs. (32) and (33), it is easily seen that the sum-type and difference-type combination
resonances cannot exist simultaneously for any pair of natural frequencies lp and lq:

3. Numerical results and discussions

In this study, we used the finite element method to numerically test a simplified model of a
liquid-filled structure, as shown in Fig. 1(a). And as shown in Fig. 1(b), the model of the finite
element meshes is composed of the shell structure elements, the 8-node interface elements, and the
interior liquid elements. And the liquid element consists of the uniform three-dimensional 20-node
cubic and 15-node tetrahedron elements.

3.1. Verification

3.1.1. Comparison of natural frequencies
To check the validity of the results, we compared numerical data with those of previous work.

Table 1 summarizes the material and geometric data for the cantilevered cylindrical shell model.
Table 2 shows the numerical results of the present study and the theoretical and experimental
results [21,22]. These data obtained by applying the clamped-free boundary condition, show good
agreement between the present work and the previous results.

3.1.2. Free-surface effect
Figs. 2 and 3 show the influence of motion of the free surface of the fluid. Several cylindrical

shells are considered in order to provide a sufficiently large series of results to show the effect of
the free surface during the vibrations. In general, as in Fig. 2, one can see that the frequencies
calculated by the method including the free surface are lower than those given by Ref. [22]. At the
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Table 1

Material and geometric data for three type cylinders

Cylinder A Cylinder B Cylinder C

rS (kg=m
3) 7800 7750 7750

rF (kg=m3) 1000 1000 1000

t (mm) 1.5 1.16 0.65

R (mm) 77.25 99.58 99.33

L (mm) 231 398 280

H/L (%) 0, 100 80 50

S.-W. Jung et al. / Journal of Sound and Vibration 280 (2005) 611–631 619



lower frequencies, the free-surface effect is approximately 1–3%, which is negligible. In contrast,
this effect becomes more pronounced at higher axial modes. This phenomenon is attributed to the
kinetic energy developed by the free surface in motion, which lowers the natural frequencies of the
system to different levels as a function of other initial conditions: geometrical and physical
characteristics, number of axial and circumferential modes.
The effect of the free surface is stronger particularly for wide shells, where one will notice a

reduction of the frequencies once there is a little fluid in the shell. The greatest difference is
observed at approximately H/LE0:2; whereas for fluid levels from H/L ¼ 0:5–1:0 the variations
are more moderate.
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Table 2

The dimensionless natural frequencies of the cylindrical shells for the filling ratio

Cyl. H/L ðn;mÞ Frequency ð10�2Þ

Theory [21] Present work Experiment [21]

A 0 (1,3) 5.721 5.717 5.563

(1,4) 8.554 8.553 8.533

(1,5) 13.374 13.367 13.361

A 1.0 (1,3) 3.618 3.548 3.504

(1,4) 5.718 5.710 5.671

(2,4) 10.030 10.030 9.880

Theory [22] Present work Experiment [22]

B 0.8 (1,3) 2.275 2.251 2.205

(1,2) 2.832 2.762 2.356

(1,4) 2.913 3.400 3.435

C 0.5 (1,4) 3.183 3.199 3.195

(1,3) 3.693 3.693 3.635

(1,2) 6.297 6.297 5.672

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

H/L

n =4

n =3

n =2

n =1

x Ref. [21]

with free-surface

without free-surface

�

Fig. 2. Comparison of frequencies between the results (with and without free-surface effects) and those of Ref. [22]

(without free-surface effects) for the clamped-free case ðm ¼ 2;R=t ¼ 100;L/R ¼ 3Þ:
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In Fig. 3, one can see that the most significant deviations are to be found with the shortest
shells, such as L/R ¼ 3: As the ratio L/R is higher, the difference between the two cases becomes
smaller. In addition, the smallest deviation between the frequencies occurs when the shell is full,
H/L ¼ 1:0: On the other hand, the potential energy due to the height of the waves has only a slight
bearing on frequency variation as it can readily be seen that it is far smaller than the strain energy
of the solid shell.

3.2. Typical modes of instability

First, we must define and examine the mode shapes which induce various types of instability.
The modes of a free–free cylindrical shell can be grouped by the number of circumferential waves
m: Here, the case m ¼ 0 is not examined, because the modes with m ¼ 0 does not induce critical
load. Fig. 4 describes the schematic shapes of various modes. The mode shapes for m ¼ 1 are
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4 6

0.04

0.08

0.12

H/L=0.25
H/L=0.5
H/L=0.75
H/L=1.0

L/R

with free-surface

without free-surface

�

Fig. 3. Frequency variation as a function of L/R and comparison between the results with free-surface effects and

without free-surface effects for clamped-free case ðm ¼ 2; n ¼ 3;R=t ¼ 300Þ:

Fig. 4. Schematic shapes of various modes. (a) First bending and second bending modes ðm ¼ 1Þ: (b) Constant and
linear axial modes and first bending mode ðm ¼ 2Þ:
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beam-like modes as presented in Fig. 4(a). In this work, those modes are called first bending mode
ðn ¼ 2Þ; second bending mode ðn ¼ 3Þ; and so forth by the number of extrema in the longitudinal
direction. If the number of circumferential waves m is equal to or greater than two, the free–free
cylindrical shell has two sets of modes, which have a linear or constant axial deformation ðn ¼
0; 1Þ; and the other modes demonstrate more severe bending in the longitudinal direction and are
called the first bending mode ðn ¼ 2Þ; second bending mode ðn ¼ 3Þ; and so on, similarly to the
modes of m ¼ 1; as shown in Fig. 4(b).

3.3. Follower force

3.3.1. Constant follower force

The dynamic stability of liquid-filled shells under a follower force was studied for the stepwise
H/L ranged 0–1, L/R ¼ 20; 30, 40, 60, 80, and t=R ¼ 0:03; 0.1, 0.2. Fig. 5 shows the typical
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Fig. 5. Eigenvalue curves of typical instability types for filling ratio ðt=R ¼ 0:1Þ:

S.-W. Jung et al. / Journal of Sound and Vibration 280 (2005) 611–631622



instability types of free–free cylindrical shells under a follower force for various filling ratios. The
eigenvalue curves for H/L ¼ 0 which has two modes ðn ¼ 1; 2 for Fig. 5(a), and n ¼ 2; 3 for
Fig. 5(b)) including a flutter instability are compared with the data in Ref. [18], and the results
appear to agree well. The instability type of cylindrical shell containing fluid changes as the filling
ratio varies. In Fig. 5(a), the flutter-type instability determines the critical load for various filling
ratios, and the instabilities occurs at modes m ¼ 2: The critical load which has the two modes
ðn ¼ 0; 2Þ is very large for low filling ratio. Similarly, the shell with L/R ¼ 20 shows flutter-type
instability at the same circumferential mode. The frequency of the each mode decreases as the
filling ratio is increased, as shown in Refs. [21,22]. These flutter-type instabilities occur as the
thickness and the length ratio are decreased, and have critical load at mX2: Fig. 5(b) shows that
depending on the filling ratio, both divergence and flutter instability can occur, and this change of
instability type is also shown for the case of beam with a concentrated mass [23]. The instability
occurs at the modes m ¼ 1; and the two modes including a flutter instability are the first bending
mode and the second bending mode in Fig. 4(a), which are beam-like modes [18]. Based on these
data, we found that the first instability type changes from the flutter instability when H/Lp0:08 to
the flutter and divergence instability when 0:08oH/Lo0:23; to divergence instability when
0:23pH/Lp0:58; and finally to flutter instability when 0:58oH/L: These divergence-type
instabilities occur when the beam-like modes are dominant in the shell, such as long and thick
shell.
Fig. 6 shows the critical values versus the filling ratio for various lengths of the shell. In general,

the critical force for empty shells increases as the length ratio is decreased [18]. However, the
critical force increases for some ranges of the lower filling ratio as the length ratio is increased. In
Fig. 6(a), the critical forces of the shell for the various filling ratios are greater than the critical
force of the shell when H/L ¼ 0; that is, the liquid filled thin shell is more stable than the empty
shell, except for the short shell when H/Lp0:08 in which m ¼ 3 shifts to m ¼ 2: As shown in
Fig. 6, this lower critical force at the low filling ratios occurs for the short shell. In Figs. 6(b) and
(c), the critical forces of both the long shell, which has a divergence-type instability region, and the
short shell for the low filling ratios are less than the critical force of the shell when H/L ¼ 0:
Therefore, the shell containing fluid in those ranges is more unstable than the empty shell.
In Fig. 6(b), the critical force does not change as the filling ratio is increased in some ranges

along the horizontal axis. These ranges are located near large filling ratios for the flutter-type
instability, and the critical force is slightly larger than that of the empty shell in those ranges. This
region increases as the length ratio and the thickness ratio are increased, as shown in Fig. 6.
The divergence-type instability, which is indicated by the region bulging downward, occurs as

the length ratio and the thickness ratio are increased and appears only when H/Lp0:6: As shown
in Figs. 6(b) and (c), the divergence region determines the instability of the shell.
For the lower filling ratio, the critical forces change rapidly and widely as the filling ratio is

increased, and the decrement of the critical force decreases or vanishes as the length ratio is
increased, and this phenomenon occurs in flutter-type instability. In Fig. 6(b), for the shell with
L/R ¼ 20; 30 and 40, the smallest critical force occurs in flutter-type instability for H/Lp0:1;
while for the shell with L/R ¼ 60 and 80, in divergence-type instability for 0:13pH/Lp0:15: This
pattern is similar for other thickness ratios, except for the thin shell whose higher circumferential
modes are dominant. The minimum critical load occur at the low filling ratio, H/Lp0:15; where
the liquid filled shell is the most unstable. In addition, the short shell shows flutter type instability,

ARTICLE IN PRESS

S.-W. Jung et al. / Journal of Sound and Vibration 280 (2005) 611–631 623



and the long shell the divergence type instability in that region. This rapid change in the low filling
ratio and the existence of the steady critical force in the large filling ratio mean that the fluid is
influenced more by the follower force as the fluid is near the bottom where the follower force acts.

3.3.2. Pulsating follower force
The instability region in e1 � lf plane for each combination of eigenvalues lp and lq can be

determined by the vertex lp7lq and the bandwidth parameter Lpq for the first order expansion as
given by Eqs. (32) and (33), where the bandwidth parameter Lpq is an important factor for
determining the width of unstable regions. Therefore, we focus on the bandwidth parameter in the
present study.
In Figs. 7 and 8, the relation between the bandwidth parameter Lpq and the constant load

parameter e0 is shown for various filling ratios. The type of combination resonance and the
transition are also presented. For Figs. 7 and 8, the analyzed circumferential wave number is that
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inducing the critical load for the constant load case. In these figures, the solid line indicates the
sum type resonance and the dash line represents the difference type resonance. The difference type
resonance means that the resonance takes place in low driving frequencies, and this phenomenon
is significant in the stability sense.
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For the case of the long shell which has m ¼ 1 and beam-type modes dominantly where the
subscript 1, 2 and 3 indicate first, second and third bending modes, respectively, the transition of
type occurs for only two combination, l17l3 and l27l3: At the point where the transition takes
place, the bandwidth parameter is 0. For the combination resonance near l17l3 the transition of
type occurs for only high filling ratio ðH/L > 0:5Þ and the transition point decreases as the filling
ratio is increased. The bandwidth parameters of resonances near 2l2; 2l3 and l1 � l2 show
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similar tendencies. However, l17l2 has different type resonance for all filling ratios. This means
that this combination resonance plays a more important role in terms of stability. For the three
resonance regions, the bandwidth parameter increases monotonically. The bandwidth parameter
of resonance near 2l1 for high filling ratio becomes zero around e0E0:75:Note that the eigenvalue
curve for the first bending mode in Fig. 5(b) also has a minimum eigenvalue near e0E0:75 as
discussed in Ref. [20] for a beam model. Note also that l22 and l12 are relatively larger than other
resonances. As for the effect of the filling ratio on the long shell, note that for low filling ratio Lpq

is smaller than that of zero filling ratio, and then, is seen that Lpq increases as the filling ratio is
increased for the resonances near all combinations of eigenvalues.
The bandwidth parameters for the short shell which has m ¼ 2 are shown in Fig. 8, where the

subscripts 1, 2 and 3 indicate the constant, linear axial modes and first bending modes,
respectively, as shown in Fig. 4(b). For this case, the transition of type occurs for only two
combination, l17l2 and l27l3 for some filling ratios. For the resonance near l17l2; the
transition points for low filling ratios ð0:3oH/Lo0:6Þ increases as the filling ratio is increased
while those for high filling ratio ð0:6oH/LÞ decreases as the filling ratio is increased. The curves
for l27l3 for high filling ratio can be seen to shift to the left with increasing value as the filling
ratio is increased. For the low filling ratio, Lpq increases to that of H/Lo0:3 and then decreases.
For the direct parametric resonances near 2l1; 2l2; the bandwidth parameter has zero value at
specific values of e0; which coincides approximately with the constant load b0 at which the
eigenvalue curves of the modes shows a maximum in Fig. 5(a).
Figs. 9 and 10 show the dynamic instability regions for various filling ratios at e0 ¼ 0:1 and

show low driving frequency regions which is significant in terms of stability. For the long shell in
Fig. 9, the instability regions observed near 2l1 and l2 � l1 for low filling ratio are smaller than
those for high filling ratio. The driving frequency of 2l1 and l2 � l1 decreases as the filling ratio is
increased.
For the short shell in Fig. 10, the difference type resonances of l2 � l1; l3 � l1 appear for

H/Lo0:4 where the frequencies of this type of resonances increase as the filling ratio is increased
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while the frequencies for H/L > 0:4 decrease as the filling ratio is increased. The instability region
for H/L > 0:4 is also seen to decrease as the filling ratio is increased. l27l3 for 0:5oH/Lo0:8
appears in low driving frequency due to the different type resonance that occur in those filling
ratios as shown in Fig. 8.

4. Conclusions

A partially liquid-filled cylindrical shell subjected to a thrust is investigated using a finite
element method, and the thrust is modelled as a constant follower force and a pulsating follower
force. Results of the analysis of the present study can be summarized as followers.
First, in the case of the constant follower force:

1. For various filling ratios, the flutter-type instability of the system, which occurs in mX2;
changes to the divergence type instability, and the divergence-type instability region that
occurred in m ¼ 1 increases as the length ratio and the thickness ratio are increased. But the
divergence region is observed to occur only in the region H/Lp0:6:

2. For the lower filling ratios, the critical forces change rapidly and widely as the filling ratio is
increased, and the decrement of critical force decreases or vanishes as the length ratio is
increased; this latter phenomenon occurs in flutter-type instability. The minimum critical load
that occurs in the low filling ratio, H/Lp0:15; at which the liquid filled shell is the most
unstable.

3. For the higher filling ratio, in some regions, the critical force does not change with the increase
of the filling ratio as the length ratio and the thickness ratio are increased.

4. The fluid is more influenced by the follower force as the fluid is near to the bottom where the
follower force acts.
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Second, in the case of pulsating follower force:

1. For the long shell ðm ¼ 1Þ; Lpq has large value for H/L > 0:5 where the instability regions are
larger than those for the low filling ratios. The driving frequencies decrease as the filling ratio is
increased. For large filling ratio, the system is more unstable than the system without fluid due
to pulsating load.

2. For short shell ðm ¼ 2Þ; Lpp has large value for the low filling ratio and the combination
resonance has different type resonance for low filling ratio. The driving frequencies decrease
for high filling ratio with decreasing the instability region while the frequencies increase for low
filling ratio.

3. The filling ratio has a large effect on the system subjected to a pulsating follower force,
especially on the system mX2:

For further study on liquid propelled launcher, we plan to include the payload and feedline
system, which is accompanied by fluctuations in the liquid pressures, especially at the fuel feed
inlets in the propulsion unit.
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Appendix A. Nomenclature

RF ;RS domain of fluid and structure at equilibrium
RI fluid–structure contact surface
RFS free-surface at equilibrium
P pressure field in the liquid
j displacement potential field in the liquid
ui displacement field in the structure
n unit normal (external to the fluid boundary)
B bulk modulus
rF ;rS mass density of fluid and structure
tij cauchy stress tensor
eij deformation tensor of elastic media
u Poisson ratio
E Young’s modulus
o natural frequency of the shell
l non-dimensionalized natural frequency
lf non-dimensionalized driving frequency
t non-dimensionalized time
e0 constant load parameter
e1 pulsating load parameter
Lpq bandwidth parameter
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g gravity
F constant follower force
bðtÞ non-dimensionalized follower force
b0 non-dimensionalized constant part of a follower force
b1 non-dimensionalized pulsating part of a follower force
bcr non-dimensionalized critical load
yp orthogonalized co-ordinate
m; n circumferential and axial mode
L;R; t length, mean radius, thickness of a shell
H fluid height
p fluid–structure interaction functional
x; y; z local co-ordinate of mean surface of the shell
u; v;w displacement of the mean surface of the shell according to the direction x; y; z
C;F normalized left and right modal matrices
KF stiffness matrix of the shell due to follower force
*M; *K mass and stiffness matrix considering compressible fluid

M�;K� mass and stiffness matrix considering incompressible fluid with free-surface
%M; %K; %Kf non-dimensionalized mass, stiffness and geometric stiffness matrices
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